2^{ème} année sciences

SERIE N° 8

SUITES REELLES

EXERCICE 1

Soit $(U_n)_{n \in IN}$ une suite arithmétique de raison r.

- 1. Calculer $\sum_{k=0}^{17} U_k$ sachant que $U_0 = 95$ et $U_{17} = 5$.
- 2. Calculer U_n et $\sum_{k=3}^n U_k$ sachant que $U_0 = -33$, n = 33 et r = 3.
- 3. Calculer U_1 et U_n sachant que r = 3, n = 33 et $\sum_{k=1}^{n} U_k = 0$.

EXERCICE 2: Soit la suite (U_n) définie sur IN par $\begin{cases} U_0 = 6 \\ U_{n+1} = U_n + 2n + 1 \end{cases}$

On pose $V_n = U_{n+1} - U_n$

- 1. Quelle est la nature de la suite (V_n) .
- 2. Calculer $\sum_{k=0}^{n-1} V_k$ en fonction de n.
- 3. En déduire U_n en fonction de n.

EXERCICE 3

Soit la suite (U_n) définie par : pour tout n de IN, $U_n = 2^n - 5n + 6$.

- 1. Calculer U_0 , U_1 , U_2 et U_3 .
- 2. Soient les suites de termes généraux V_n et W_n définies par: \forall n de IN, $V_n = 2^n$ et $W_n = 5n 6$.
 - a- Montrer que (V_n) est une suite géométrique dont on précisera le premier terme et la raison q.
 - b- Montrer que (w_n) est une suite arithmétique.
- 3. Soit $S_1 = \sum_{i=0}^n V_i$; $S_2 = \sum_{i=0}^n W_i$; $S_3 = \sum_{i=0}^n U_i$. Calculer S_1 et S_2 puis S_3 en fonction de n.

EXERCICE 4

Soit (U_n) la suite définie par : $\begin{cases} u_0 = 3 \\ u_{n+1} = \frac{1}{2} u_n + 2 \quad \text{pour tout} \quad n \in IN \end{cases}$

Soit la suite (V_n) définie sur IN par, $V_n = U_n + a$.

- 1. Déterminer a pour que $(V_n) \,$ soit une suite géométrique de raison $\frac{1}{2} \,$.
- 2. Exprimer V_n puis U_n en fonction de n.
- 3. Calculer $S_n = \sum_{p=1}^n v_p$ puis $S'_n = \sum_{p=1}^n u_p$.

EXERCICE 5

On considère la suite (U_n) définie par $\begin{cases} U_0 = 1 ; U_1 = 3 \\ U_{n+2} = \frac{1}{2}a^2U_{n+1} + (a-3)U_n ; a \in IR \end{cases}$

Soit la suite $(V_n)_{n\,\in\, IN}$ définie par $\,V_n=\,U_{n+1}\,$ - $\,U_n$

I / On pose a = 2.

- 1. Vérifier que la suite (V_n) est constante.
- 2. Déduire que (U_n) est une suite arithmétique dont on précisera la raison et le premier terme.
- 3. Exprimer en fonction de n, U_n et $S_n = \sum_{i=0}^n U_i$

II/ On pose a = -4

- 1. Montrer que (V_n) est une suite géométrique.
- 2. Exprimer (V_n) en fonction de n.
- 3. Calculer $S_n = \sum_{i=0}^n V_i$.
- 4. Montrer que $S_n = U_{n+1} 1$.